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Goal
ü To design and implement distributed training of machine learning, here, Support Vector Machines

(SVM), on multiple FPGA system
ü To reduce network communication while achieving fast training , memory-efficiency, and energy savings

Motivation
Ø SVM training in computationally expensive with high memory requirement for kernelmatrix
Ø Traditional SVM training accelerators are based on inherently sequential algorithms using a single FPGA

board
Ø Need to distribute and accelerate training on edge where the data is generated and stored across multiple

devices

Support Vector Machines
Ø Supervised machine learning algorithm for

classification and regression problems
Ø Mathematically, a quadratic programming

problem which solves for maximal separating
hyperplane as a classifier

Distributed QRSVM
Ø QR decomposition-based distributed SVM
Ø Memory-efficient + negligible Communication
Ø Comprises of 3 stages:

1. Initialization
2. Distributed QR decomposition (formulation)
3. Parallel Dual Ascent (solver)

Fig. Process Flow for Distributed QRSVM algorithm

Distributed	QR	Decomposition

Fig. Computational flow graph for distributed QR decomposition

Parallel	Dual	Ascent

Fig. Computational	flow	graph	for	parallel	dual	scent

Fig. Kernel SVM: Learning hyperplane in higher feature dimension Fig. SIMD design for computational kernel (a) Inner
Product sum = <x,y> via binary reduction tree (b) Scaled
vector addition SAXPY, (x = x +𝛼 y) via fine-grained
parallelism. The vectorized kernels operate on
W=floor(N/B) data samples in each pass

Basic Computational Kernels Data Layout + Memory Interface

Fig. Data layout in column-major order. Memory-IP
interface for on-chip Block RAM (full duplex) is called
bram and that for off-chip DDR (half-duplex) is called
AXI Master. Nbram=1024 bits , NAXI= 2048 bits

Kernel BRAM DDR

Inner	Product sum x,	y

SAXPY x y

Memory	AssignmentIncreasing	Throughput

Fig. Doubling	the	throughput	for	Inner	Product	
<x,y>	=	<x1,y1>	+	<x2,y2>

FPGA-Architecture	for	distributed	SVM	training	

Multiple FPGA Network

Ø Each edge device comprises of FPGA IP logic + Host processor
Ø Illustration for p = 4 edges in a network
Ø A single QRSVM IP is synthesized per FPGA device to operate

at clock frequency of 125 MHz with 39 Watts of power
Ø Computational workload is entirely with the FPGA while

communication is through Host processor (PCIe)
Ø Each FPGA handles maximum of 256K samples

Resource BRAM DSP FF LUT

Available 2160 6840 2.36M 1.18M

Used 1405 1221 545K 450K

% 65% 18% 23% 38%

FPGA	Xilinx	Virtex	xcvu9p-flgb2104-2-i	 

Hardware Platform
Proof-of-Concept implemented on Amazon
AWS F1 instance with p={1,2,4,8} 16nm
Xilinx Virtex Ultrascale+ VU9P FPGA units
forming a multiple FPGA network

Dataset Description

Training	Time
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Strong	Scaling	Analysis

Weak	Scaling	Analysis

Ø Achieves near linear parallel speedup for
larger datasets Skin, Webspam, Covtype

Ø For small dataset MNIST, going beyond p = 4
seems to be overkill

Ø Parallel Dual Ascent is computationally
dominant than Distributed QR decomposition

Ø Near negligible communication overhead <1%

Ø Workload per FPGA fixed at 250K samples
Ø (a) TQR is constant while TDA↑with #iterations
Ø (b) (𝑇CDEFG/t) is constant as desired

Energy	Analysis
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Ø Under strong scaling, the proposed FPGA design
follows the ideal energy consumption trend that
is constant across #FPGA units.

Ø Validates fully parallel implementation

Ø Under weak scaling, the ideal energy
consumption trend is linear while no
scalability trend is quadratic.

Ø The proposed design is closer to being
linear than quadratic. Aberration at p=8
due to large #iterations for fine tuning
model with increasing overall problem size

Ø (Energy/p) is nearly constant as expected
with uniform workload per device

Fig. Energy	consumption	under	Strong	Scaling	
Skin	and	Covtype

Fig. (a)	Total	Energy	(b)	Energy	per	core	
consumption	under	Weak	Scaling	for	SUSY

Future	Work

q To design and implement distributed training for Deep Learning models for resource constrained
devices with limited memory and low power

q To explore online/incremental learning capabilities for machine learning models at edge
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